Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Химический факультет

УТВЕРЖДАЮ:
И.о. декана химического факультета
А.С. Князев

м. _ abcycm q _ 20 dd _ г.

Рабочая программа дисциплины

Системы управления химико-технологическими процессами

по направлению подготовки

04.04.01 Химия

Направленность (профиль) подготовки: «Фундаментальная и прикладная химия веществ и материалов»

Форма обучения **Очная**

Квалификация **Магистр**

Год приема **2022**

Код дисциплины в учебном плане: Б1.О.В.ДВ.04.02

СОГЛАСОВАНО: Руководитель ОП

А.С. Князев

Председатель УМ

В. Хасанов

Томск - 2022

1. Цель и планируемые результаты освоения дисциплины (модуля)

Целью освоения дисциплины является формирование следующих компетенций:

- ОПК-1. Способен выполнять комплексные экспериментальные и расчетнотеоретические исследования в избранной области химии или смежных наук с использованием современных приборов, программного обеспечения и баз данных профессионального назначения;
- ОПК-3. Способен использовать вычислительные методы и профессиональной адаптировать существующие программные продукты для решения задач деятельности;
 - ПК-3. Способен к решению профессиональных производственных задач.

Результатами освоения дисциплины являются следующие индикаторы достижения компетенций:

- ИОПК-1.3. Использует современное оборудование, программное обеспечение и профессиональные базы данных для решения задач в избранной области химии или смежных наук.
- ИОПК-3.1. Использует современные IT-технологии при сборе, анализе и представлении информации химического профиля;
- ИОПК-3.2. Использует стандартные и оригинальные программные продукты, при необходимости адаптируя их для решения задач профессиональной деятельности;
- ИПК-3.1. Анализирует имеющиеся нормативные документы по системам стандартизации, разработки и производству химической продукции и предлагает технические средства для решения поставленных задач;
- ИПК-3.2. Производит оценку применимости стандартных и/или предложенных в результате НИР технологических решений на применимость с учетом специфики изучаемых процессов.

2. Задачи освоения дисциплины

Освоить основные понятия теории управления технологическими процессами;

Освоить статические и динамические характеристики объектов и звеньев управления;

Освоить основные виды систем автоматического регулирования и законы управления;

Освоить типовые системы автоматического управления в химической промышленности;

Освоить методы и средства диагностики и контроля основных технологических параметров;

Освоить основные понятия о нелинейных системах автоматического регулирования, релейных системах, логических алгоритмах управления, адаптивных и оптимальных системах управления

Освоить принципы подбора рациональной системы регулирования технологического процесса;

Уметь оценивать устойчивость автоматической системы регулирования;

Уметь выбирать конкретные типы приборов для диагностики и управления химико-технологическим процессом.

3. Место дисциплины (модуля) в структуре образовательной программы

Дисциплина относится к Блоку 1 «Дисциплина (модули) по выбору 4 (ДВ.4)».

Дисциплина относится к части образовательной программы, формируемой участниками образовательных отношений, предлагается обучающимся на выбор.

4. Семестр(ы) освоения и форма(ы) промежуточной аттестации по дисциплине

Семестр 1, зачет.

5. Входные требования для освоения дисциплины

Дисциплина «Системы управления химико-технологическими процессами» является логическим продолжением в цепи дисциплин по направлению «химия». Для успешного освоения дисциплины требуются результаты обучения по следующим дисциплинам: химическая технология.

Для успешного освоения дисциплины, параллельно должны изучаться следующие дисциплины: актуальные задачи современной химии 2, основы проектирования химических и нефтехимических производств.

6. Язык реализации

Русский

7. Объем дисциплины (модуля)

Общая трудоемкость дисциплины составляет 3 з.е., 108 часов, из которых:

- лекции: 16 ч.;
- практические занятия: 16 ч.;
 - в том числе практическая подготовка: 16 ч.

Объем самостоятельной работы студента определен учебным планом.

8. Содержание дисциплины (модуля), структурированное по темам

Тема 1. Общие сведения об автоматическом управлении производственными процессами, классификация систем автоматического регулирования (САР).

Основные понятия контроля и регулирования, принципы и алгоритмы регулирования, основные требования к системе управления и средствам контроля ХТП, передаточные функции, уровни автоматизации производства и иерархия системы управления, основные руководящие документы и правовые акты.

Тема 2. Методы и средства измерения технологических параметров.

Методы электрических измерений. Методы и средства измерения температуры, уровня давления (прямые, косвенные), расхода (по перепаду давления, электромагнитные и ультразвуковые, по уровню, тепловые, вихревые и пр.). Принцип работы и устройство средств измерений. Средства и методы поверки. Связь с системой управления.

Тема 3. Средства измерения физико-химических характеристик

Концентрация, pH, электропроводность и пр. Типы приборов и принципы работы. Прямые и косвенные измерения. Связь с системой управления процессом. Требования к приборам. Средства и методы поверки.

Тема 4. Автоматические системы регулирования и управления.

Структура автоматической системы регулирования, классификации регуляторов и систем автоматического регулирования, математическое описание типовых звеньев, понятия статической и динамической характеристик, типы соединения элементов системы, законы регулирования, принципы регулирования, понятие устойчивости систем, критерии качества переходных процессов, оценка параметров настройки систем автоматического регулирования, технические средства автоматического регулирования. SCADA, функции и разновидности.

Тема 5. Базы данных и их применение.

Функция регистрации с накоплением данных. Выгрузка данных: цели, задачи, работа с данными системы АСУ ТП. Принципы выбор временного периода выгружаемых значений.

Тема 6. Проектирование систем АСУ ТП.

Принципы и закономерности проектирование систем регулирования и управления процессом. Параметры выбора приборов, мест их установки, регуляторов и звеньев. Оценка устойчивости проектируемой системы. Типовые системы регулирования и управления. Индивидуальные системы. Функции приборов и их графическое изображение согласно нормативным актам. Принципы и алгоритмы синтеза P&ID схем.

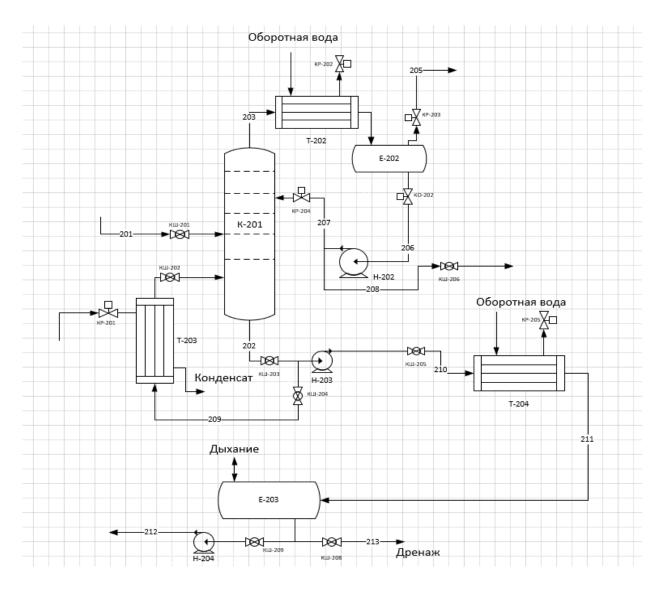
9. Текущий контроль по дисциплине

Текущий контроль по дисциплине проводится путем контроля посещаемости лекций и практических занятий, проведения занятий с презентациями студентов по индивидуальному заданию и фиксируется в форме контрольной точки не менее одного раза в семестр.

10. Порядок проведения и критерии оценивания промежуточной аттестации

Зачет в первом семестре проводится в устной форме в виде ответа на билет.

Билет состоит из двух частей, проверяется освоение компетенций ОПК-1, ОПК-3, ПК-3. Продолжительность экзамена 2,0 часа.


Первая часть представляет собой 2 теоретических вопроса. Предоставляется развернутый ответ в устной форме.

Вторая часть содержит один вопрос и оформлен в виде практического задания (часть схемы и описание этой части технологического процесса без контуров контроля и регулирования). Ответ предоставляется в виде решения практического задания (определить точки контроля, расставить, обозначить и указать типы и функции приборов КИП, обозначить необходимые контуры регулирования, исходя из параметров процесса) с обоснованием принятых решений и типов подобранных приборов КИП.

Примерный перечень теоретических вопросов:

- 1. Иерархия системы управления. Что включает каждый уровень?
- 2. Требования к системам управления и средствам контроля;
- 3. Основные функции приборов КИП. Их обозначение согласно ГОСТ;
- 4. Типы приборов измерения расхода;
- 5. Принцип работы кориолисового датчика измерения расхода;
- 6. Методы и средства измерения температуры.
- 7. Методы и средства измерения давления;

Пример практического задания:

Описание схемы:

Отпарная колонна K-201 предназначена для извлечения из водного раствора кислоты (pH=1-3) органических соединений. Колонна непрерывного действия.

Среда, поступая в кубовую часть колонны, нагревается в выносном ребойлере Т-203. Температура куба колонны составляет 115-120 °C. Давление низа колонны -0,12-0,14 МПа.

Пары, представляющие собой азеотропные смеси воды и органических соединений, а также углеводородные газы, отводятся верхом колонны и частично конденсируются в теплообменнике T-202. Температура среды на выходе теплообменника составляет $40-50~^{\circ}$ С. Давление верха колонны $-0.105-0.11~\text{М}\Pi a$.

Частично сконденсированные пары поступают в емкость Е-202.

Часть сконденсированной жидкости, представляющая из себя азеотропные смеси углеводородов с водой, возвращаются в колонну в виде флегмы, остальная часть накапливается в емкости и отводится в дренажную емкость для органических сливов. Температура верха колонны должна составлять $70\,^{\circ}\mathrm{C}$.

Нижний продукт, представляющий собой водный раствор кислоты, отводится из колонны насосом H-203, охлаждается до температуры 40-50 °C в теплообменнике T-204 и поступает в емкость накопления E-203.

Емкость периодически опорожняется по мере накопления. Раствор при помощи насоса H-204 направляется в цех водоподготовки для его использования в качестве коагулянта в процессе подготовки и очистки воды.

Расставить приборы КИП и контуры регулирования процесса. Указать функции приборов. Определить возможные типы приборов КИП. Устно описать схему регулирования процесса.

Результаты ответа определяются оценками «зачтено», «не зачтено».

Оценка «зачтено» выставляется студенту, если даны полные и правильные ответы на теоретические вопросы билета, приводит решение практического задания; содержание ответа изложено логично и последовательно, практическое задание выполнено согласно актуальным нормативным и правовым актам; существенные фактические ошибки отсутствуют; ответ соответствует нормам русского литературного языка. Допускаются небольшие ошибки и погрешности, не имеющие принципиального характера.

Оценка «не зачтено» выставляется студенту, если он не дал ответа на большинство вопросов; дал неверные, содержащие фактические ошибки, ответы на все вопросы; не смог ответить более чем на половину дополнительных и уточняющих вопросов преподавателя, а также студенту, отказавшемуся отвечать на вопросы преподавателя.

11. Учебно-методическое обеспечение

a) Электронный учебный курс по дисциплине в электронном университете «Moodle» https://moodle.tsu.ru/enrol/index.php?id=33442

12. Перечень учебной литературы и ресурсов сети Интернет

- а) основная литература:
- Беспалов А. В., Харитонов Н. И. Системы управления химико-технологическими процессами. Учебник для вузов. М.: ИКЦ «Академкнига», 2007. 690 с.
- Беспалов А. В., Харитонов Н. И. Задачник по системам управления химикотехнологическими процессами. Учебное пособие для вузов. М : ИКЦ «Академкнига», $2005.-307~{\rm c}.$
- Основы автоматизации производственных процессов нефтегазового производства: учебник в электронном формате / под ред. М. Ю. Праховой. 2-е изд., испр. Москва: Академия, 2014. URL: http://www.lib.tpu.ru/fulltext2/m/2014/FN/fn-96.pdf
- Фёдоров, А. Ф. Системы управления химико-технологическими процессами: учебное пособие / А. Ф. Фёдоров, Е. А. Кузьменко; Национальный исследовательский Томский политехнический университет. 2-е изд. Томск: Изд-во ТПУ, 2015. URL: http://www.lib.tpu.ru/fulltext2/m/2015/m291.pdf
- Фёдоров, А. Ф. Системы управления химико-технологическими процессами: лабораторный практикум / А. Ф. Фёдоров, Д. А. Баженов, Е. А. Кузьменко; Национальный исследовательский Томский политехнический университет. 2-е изд., испр. и доп. Томск: Изд-во ТПУ, 2013. URL: http://www.lib.tpu.ru/fulltext2/m/2014/m053.pdf

б) дополнительная литература:

- Беспалов А. В., Харитонов Н. И., Золотухин С. Е., Финякин Л. Н., Садиленко А. С., Грунский В. Н. Динамические звенья. Временные характеристики. Учебное пособие. М.: РХТУ им. Д. И. Менделеева, 2002. 80 с.
- Беспалов А. В., Харитонов Н. И., Золотухин С. Е., Финякин Л. Н., Садиленко А. С., Грунский В. Н. Динамические звенья. Частотные характеристики. Учебное пособие. М.: РХТУ им. Д. И. Менделеева, 2002.-84 с.
- Методы классической и современной теории автоматического управления: Учебник в 3-х т. Т.1. Анализ и статистическая динамика систем автоматического управления / Под ред. Н. Д. Егупова. М.: МГТУ им. Н. Э. Баумана, 2000. 748 с.
- Дудников Е. Г., Казаков А. В., Софиева Ю. Н., Софиев А. Х., Цирлин А. М. Автоматическое управление в химической промышленности. М.: Химия, 1987. 368 с.

- Иванова Г. М., Кузнецов Н. Д., Чистяков В. С. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984. 229 с.
- Клюев А. С., Глазов Б. В., Дубровский А. Х. Проектирование систем автоматизации технологических процессов. М.: Энергия, 1980. 512 с.
- Автоматизация технологических процессов. Обозначения условных приборов и средств автоматизации в схемах ГОСТ 21.404-85. М.: Издательство стандартов, 1985.-16 с.
- Практикум по автоматике и системам управления производственными процессами/ Под ред. И. М. Масленникова. М. : Химия, 1986. 336 с.
- Автоматика, публичное акционерное общество: [сайт]. Воронеж, 2013. URL: http://www.oavt.ru (дата обращения: 27.05.2020). Режим доступа: свободный доступ из сети Интернет. Текст: электронный.
- Кулаков, М. В. Технологические измерения и приборы для химических производств: учебник для вузов / М. В. Кулаков. 4-е изд., стер. Москва : Альянс, 2008. 424 с.
 - в) ресурсы сети Интернет:

http://elibrary.ru

https://login.webofknowledge.com/

13. Перечень информационных технологий

- а) лицензионное и свободно распространяемое программное обеспечение:
- Microsoft Office Standart 2013 Russian: пакет программ. Включает приложения: MS Office Word, MS Office Excel, MS Office PowerPoint, MS Office OneNote, MS Office Publisher, MS Outlook, MS Office Web Apps (Word Excel MS PowerPoint Outlook);
 - MS Visio или другой графический редактор (AutoCAD/Компас-3D);
 - публично доступные облачные технологии (Google Docs, Яндекс диск и т.п.).
 - б) информационные справочные системы:
- Электронный каталог Научной библиотеки ТГУ http://chamo.lib.tsu.ru/search/query?locale=ru&theme=system
- Электронная библиотека (репозиторий) ТГУ http://vital.lib.tsu.ru/vital/access/manager/Index
 - ЭБС Лань http://e.lanbook.com/
 - ЭБС Консультант студента http://www.studentlibrary.ru/
 - Образовательная платформа Юрайт https://urait.ru/
 - ЭБС ZNANIUM.com https://znanium.com/
 - 9EC IPRbooks http://www.iprbookshop.ru/

14. Материально-техническое обеспечение

Лекционная аудитория, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации.

Аудитория для выполнения практических занятий, оснащенная мультимедийным оборудованием для демонстрации презентаций, слайдов и компьютерной анимации, а также персональными компьютерами с установленным пакетом MS Office (MS Word, MS Excel, MS Visio) и доступом в интернет для выполнения практических заданий.

15. Информация о разработчиках

Норин Владислав Вадимович, ведущий специалист отдела предпроектной подготовки ООО «ИХТЦ», ассистент кафедры неорганической химии ХФ НИ ТГУ.

Вольф Андрей Викторович, технолог производственного участка ООО «ИХТЦ».